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Abstract

The Modified Szpiro Conjecture, which is an open
statement about elliptic curves, is equivalent to
the ABC conjecture. This equivalence gives us a
dictionary that moves between good abc triples
and good elliptic curves. This summer, we intro-
duced infinite families of good ABC triples, gener-
alized known results, and showed that there are in-
finitely many good isogeny classes of elliptic curves
with a 12-isogeny.

ABC Conjecture

The ABC Conjecture states the following: For ε > 0,
there exist only finitely many triples (a, b, c) of co-
prime positive integers with a + b = c such that

c > rad(abc)1+ε

Good ABC Triples

An abc triple, is a triple of positive integers,
(a, b, c), such that a + b = c, a < b < c, and
gcd(a, b) = 1. An abc triple is defined to be good if

rad(abc) < c

where the radical of abc, denoted by rad(abc), are
the product of the distinct primes dividing abc.

Figure: The table below lists all good ABC triples (a, b, c)
with a < b < c < 200.

While good abc triple are rare, there are infinitely
many good abc triples which demonstrates the need
for the ϵ in the ABC Conjecture.

Specifically, the following two constructions show
that there are infinitely many good abc triples.
(1) For each odd prime p, the following abc triple is
good: (1, 2p(p−1)−1, 2p(p−1)) (Granville,Tucker,2002).
(2) For p an odd prime and k a positive integer, the
abc triple (1, p(p−1)k − 1, p(p−1)k) (Barrios, 2020).
Our first result generalizes these two constructions:

Theorem(A-S,H)

For every positive integer k, the following are good
ABC triples:

1 (1, n(n−1)k − 1, n(n−1)k) if n is a positive
odd integer

2 (1, n(n+1)k, n(n+1)k + 1) if n is an even
integer

3 (1, n(n+1)k − 1, n(n+1)k) if n is an odd
positive integer and either 2|(n + 1) or
2|k

4 (1, nφ(m)k − 1, nφ(m)k) if m is a positive
integer such that gcd(m, n) = 1, and

m
rad(m) > n

• φ(m) is the number of relatively prime
positive integers to m that are less than m

Elliptic Curves

An Elliptic Curve over Q is the set of rational
numbers (x, y) that satisfy the equation

y2 = x3 + Ax + B

together with a point “at infinity” denoted O, where
A, B ∈ Q satisfy 4A3 + 27B2 ̸= 0. There is a
natural group structure of the points on an elliptic
curve where O is the identity. We say that E1 is Q-
isomorphic to E2 if there exists ϕ : E1 → E2 with
the property that ϕ (OE1) = OE2 and ϕ is defined as

ϕ(x, y) = (u2x + r, u3y + u2sx + w)
where u, r, s, w ∈ Q and u ̸= 0. Let E be a
rational elliptic curve. A global minimal model
for E is a Weierstrass model

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

such that each aj ∈ Z and the absolute value of the
discriminant, |∆|, is minimal over all Q-isomorphic
elliptic curves to E. The minimal discriminant
of E, denoted ∆min

E , is the discriminant of a global
minimal model. Moreover, we have the identity
1728∆min

E = c3
4 − c2

6. If the gcd(c4, ∆min
E ) = 1, then

we say that E is a semistable elliptic curve. If E
is a semistable elliptic curve, then the conductor,
NE of E satisfies NE = rad(∆min

E ).

Figure: The Group Law on an Elliptic Curve

Good Elliptic Curves

The Modified Szpiro Conjecture states that for
any given ϵ > 0, there are finitely many elliptic curves
E over Q (up to isomorphism) such that

N 6+ϵ
E < max{|c4|3, c2

6}
where c4,c6 are associated to a minimal model of E.
An elliptic curve is defined to be good if

N 6
E < max{|c4|3, c2

6}

Isogenies and Isogeny Classes

An isogeny π : E → E ′ between elliptic curves is a
nonzero surjective group homomorphism with finite
kernel. An n-isogeny is an isogeny such that

ker(π) ∼= Z/nZ.

The isogeny class (over Q) of an elliptic curve
E/Q is the set of all isomorphism classes of elliptic
curves defined over Q that are isogenous to E/Q.

Our Project

Elliptic curves with a non-trivial n-isogeny can be
parameterized in terms of a family of n-isogenous,
non-isomorphic curves Fn,i(a, b, d) for some coprime
integers a, b and some square-free integer d. In par-
ticular, if E is an elliptic curve over Q that admits
a non-trivial n-isogeny, then its isogeny class is given
by {Fn,i(a, b, d)}.
Our research is motivated by the following question:
are there infinitely many isogeny classes with the
property that each of its members is a good elliptic
curve? We call these isogeny classes good isogeny
classes. The following result shows that there are
infinitely many good isogeny classes.

Theorem(A-S,H)

Let (a, b, c) be a good ABC triple such that b ≡ 0
mod 6, then the isogeny class of

F12,i(a, b)
is good whenever b

a > 25.4928

Good Elliptic Curves
from Good ABC Triples

Consider the family of good abc triples1, n(n+1)k, n(n+1)k + 1
. If we choose n = 6,

then b
a = n(n+1)k = 67k satisfies the properties for our

theorem for k ≥ 1 and therefore produces infinitely
many good isogeny class.
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