Good ABC Triples and Good Elliptic Curves

Elise Alvarez-Salazar ${ }^{1}$ Calvin Henaku ${ }^{2}$

${ }^{1}$ University of California Santa Barbara ${ }^{2}$ Washington University in St. Louis

Abstract

The Modified Szpiro Conjecture, which is an open statement about elliptic curves, is equivalent to the ABC conjecture. This equivalence gives us a dictionary that moves between good abc triples and good elliptic curves. This summer, we introduced infinite families of good ABC triples, generalized known results, and showed that there are infinitely many good isogeny classes of elliptic curves with a 12 -isogeny.

ABC Conjecture

The ABC Conjecture states the following: For $\varepsilon>0$, there exist only finitely many triples (a, b, c) of co prime positive integers with $a+b=c$ such that

$$
c>\operatorname{rad}(a b c)^{1+\varepsilon}
$$

Good ABC Triples

An abc triple, is a triple of positive integers (a, b, c), such that $a+b=c, \quad a<b<c$, and $\operatorname{gcd}(a, b)=1$. An abc triple is defined to be good if

$$
\operatorname{rad}(a b c)<c
$$

where the radical of $a b c$, denoted by $\operatorname{rad}(a b c)$, are the product of the distinct primes dividing $a b c$

a	b	c	$\operatorname{rad}(a b c)$
1	8	9	6
5	27	32	30
1	48	49	42
1	63	64	30
1	80	81	30
32	49	81	42
4	121	125	110
3	125	128	30

Figure: The table below lists all good $A B C$ triples (a, b, c) with $a<b<c<200$

While good $a b c$ triple are rare, there are infinitely many good $a b c$ triples which demonstrates the need for the ϵ in the ABC Conjecture.

Specifically, the following two constructions show that there are infinitely many good $a b c$ triples (1) For each odd prime p, the following $a b c$ triple is good: $\left(1,2^{p(p-1)}-1,2^{p(p-1)}\right)$ (Granville,Tucker,2002). 2) For p an odd prime and k a positive integer, the $a b c$ triple $\left(1, p^{(p-1) k}-1, p^{(p-1) k}\right)$ (Barrios, 2020). Our first result generalizes these two constructions:

Theorem(A-S,H)

For every positive integer k, the following are good ABC triples:
(1) ($\left.1, n^{(n-1) k}-1, n^{(n-1) k}\right)$ if n is a positive odd integer
(2) $\left(1, n^{(n+1) k}, n^{(n+1) k}+1\right)$ if n is an even integer
3 $\left(1, n^{(n+1) k}-1, n^{(n+1) k}\right)$ if n is an odd positive integer and either $2 \mid(n+1)$ or $2 \mid k$
(4) $\left(1, n^{\varphi(m) k}-1, n^{\varphi(m) k}\right)$ if m is a positive integer such that $\operatorname{gcd}(m, n)=1$, and $\frac{m}{\operatorname{rad}(m)}>n$
$\varphi(m)$ is the number of relatively prime positive integers to m that are less than m

Elliptic Curves

An Elliptic Curve over \mathbb{Q} is the set of rational numbers (x, y) that satisfy the equation

$$
y^{2}=x^{3}+A x+B
$$

together with a point "at infinity" denoted \mathcal{O}, where $A, B \in \mathbb{Q}$ satisfy $4 A^{3}+27 B^{2} \neq 0$. There is a natural group structure of the points on an elliptic curve where \mathcal{O} is the identity. We say that E_{1} is \mathbb{Q} isomorphic to E_{2} if there exists $\phi: E_{1} \rightarrow E_{2}$ with the property that $\phi\left(\mathcal{O}_{E_{1}}\right)=\mathcal{O}_{E_{2}}$ and ϕ is defined as

$$
\phi(x, y)=\left(u^{2} x+r, u^{3} y+u^{2} s x+w\right)
$$

where $u, r, s, w \in \mathbb{Q}$ and $u \neq 0$. Let E be a rational elliptic curve. A global minimal model for E is a Weierstrass model
$y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$

Our Project

such that each $a_{j} \in \mathbb{Z}$ and the absolute value of the discriminant, $|\Delta|$, is minimal over all \mathbb{Q}-isomorphic elliptic curves to E. The minimal discriminant of E, denoted $\Delta_{E}^{\min }$, is the discriminant of a global minimal model. Moreover, we have the identity $1728 \Delta_{E}^{\min }=c_{4}^{3}-c_{6}^{2}$. If the $\operatorname{gcd}\left(c_{4}, \Delta_{E}^{\min }\right)=1$, then we say that E is a semistable elliptic curve. If E is a semistable elliptic curve, then the conductor, N_{E} of E satisfies $N_{E}=\operatorname{rad}\left(\Delta_{E}^{\min }\right)$.

Figure: The Group Law on an Elliptic Curve
Good Elliptic Curves
The Modified Szpiro Conjecture states that for any given $\epsilon>0$, there are finitely many elliptic curves E over \mathbb{Q} (up to isomorphism) such that

$$
N_{E}^{6+\epsilon}<\max \left\{\left|c_{4}\right|^{3}, c_{6}^{2}\right\}
$$

where c_{4}, c_{6} are associated to a minimal model of E. An elliptic curve is defined to be good if

$$
N_{E}^{6}<\max \left\{\left|c_{4}\right|^{3}, c_{6}^{2}\right\}
$$

Isogenies and Isogeny Classes
An isogeny $\pi: E \rightarrow E^{\prime}$ between elliptic curves is a nonzero surjective group homomorphism with finite kernel. An n-isogeny is an isogeny such that

$$
\operatorname{ker}(\pi) \cong \mathbb{Z} / n \mathbb{Z}
$$

The isogeny class (over Q) of an elliptic curve E / \mathbb{Q} is the set of all isomorphism classes of elliptic curves defined over \mathbb{Q} that are isogenous to E / \mathbb{Q}.

Elliptic curves with a non-trivial n-isogeny can be parameterized in terms of a family of n-isogenous non-isomorphic curves $F_{n, i}(a, b, d)$ for some coprime integers a, b and some square-free integer d. In particular, if E is an elliptic curve over \mathbb{Q} that admit a non-trivial n-isogeny, then its isogeny class is given by $\left\{F_{n, i}(a, b, d)\right\}$
Our research is motivated by the following question are there infinitely many isogeny classes with the property that each of its members is a good elliptic curve? We call these isogeny classes good isogeny classes. The following result shows that there are infinitely many good isogeny classes.
Theorem(A-S,H)
Let (a, b, c) be a good ABC triple such that $b \equiv 0$
$\bmod 6$, then the isogeny class of

$$
F_{12, i}(a, b)
$$

is good whenever $\frac{b}{a}>25.4928$

Good Elliptic Curves from Good ABC Triples

Consider the family of good abc triple $\left(1, n^{(n+1) k}, n^{(n+1) k}+1\right)$. If we choose $n=6$ then $\frac{b}{a}=n^{(n+1) k}=6^{7 k}$ satisfies the properties for ou theorem for $k \geq 1$ and therefore produces infinitely many good isogeny class.

Acknowledgements
We would like to thank

- Pomona College for making PRiME 2022 possible
- Dr. Alex Barrios, Summer Soller, and all PRiME 2022 staff for their guidance and expertise throughout this experience
This material is based on work supported by the Na tional Science Foundation (DMS-2113782).

